Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Journal of Central South University(Medical Sciences) ; (12): 157-164, 2023.
Article in English | WPRIM | ID: wpr-971381

ABSTRACT

OBJECTIVES@#Gastric cancer is a common cancer of the digestive system. Long non-coding RNA (lncRNA) plays an important role in the formation and development of gastric cancer. This study aims to investigate the effect of long non-coding lncRNA 114227 on biologic behaviors in gastric cancer cells.@*METHODS@#The experiment was divided into 4 groups: a negative control (NC) group, a lncRNA 114227 small interference (si-lncRNA 114227) group, an empty vector (Vector) group, and an overexpression vector (OE-lncRNA 114227) group. The expressions of lncRNA 114227 in gastric mucosa and gastric cancer tissues, gastric mucosal epithelial cells and different gastric cancer strains were determined by real-time reverse transcription PCR (real-time RT-PCR).The proliferation were detected by CCK-8 assay in gastric cancer cells. The epithelial-mesenchymal transformation (EMT) was utilized by Transwell assay, scratch healing assay, and Western blotting in gastric cancer cells. The effect of lncRNA 114227 on proliferation of gastric cancer cells was detected by tumor bearing experiment in nude mice in vivo.@*RESULTS@#The expression level of lncRNA 114227 in the gastric cancer tissues was significantly lower than that in the gastric mucosa tissues, and in 4 kinds of gastric cancer strains was all significantly lower than that in gastric mucosal epithelial cells (all P<0.01). In vitro, the proliferation and migration abilities of gastric cells were significantly reduced after overexpressing lncRNA 114227, and cell proliferation and migration were enhanced after silencing lncRNA 114227 (all P<0.05). The results of in vivo subcutaneous tumorigenesis in nude mice showed that the tumorigenic volume of the tumor-bearing mice in the OE-lncRNA 114227 group was significantly smaller than that of the Vector group, and the tumorigenic quality was lower than that of the Vector group (P<0.05), indicating that lncRNA 114227 inhibited tumorigenesis.@*CONCLUSIONS@#The expression of lncRNA 114227 is downregulated in gastric cancer gastric cancer tissues and cell lines. LncRNA 114227 may inhibit the proliferation and migration of gastric cancer cells through EMT process.


Subject(s)
Animals , Mice , RNA, Long Noncoding/metabolism , Stomach Neoplasms/pathology , Mice, Nude , Cell Line, Tumor , Cell Proliferation/genetics , Carcinogenesis/genetics , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Apoptosis/genetics
2.
Journal of Experimental Hematology ; (6): 801-809, 2023.
Article in Chinese | WPRIM | ID: wpr-982133

ABSTRACT

OBJECTIVE@#To investigate the biological function of miR-203a-5p and the underlying mechanism in multiple myeloma (MM).@*METHODS@#Three miRNA expression profiles (GSE16558, GSE24371 and GSE17498) were downloaded from the GEO database. The three miRNA expression profiles contained 131 MM samples and 17 normal plasmacyte samples. The robust rank aggregation (RRA) method was used to identify the differentially expressed miRNAs between MM and normal plasmacytes. In order to carry out cytological experiments, MM cell line with stable over-expression of miR-203a-5p was constructed with lentivirus. Expression levels of miR-203a-5p in MM cells were quantified by qRT-PCR. The effects of miR-203a-5p on MM cells were investigated using assays of cell viability and cell cycle. Cell proliferation was measured using the Cell Counting kit (CCK)8 assay. The percentage of cells in each cell cycle was measured with a FACSCalibur system. Xenograft tumor models were established to evaluate the role of miR-203a-5p in tumorigenesis in vivo . To elucidate the underlying molecular mechanisms of miR-203a-5p in mediating cell proliferation inhibition and cell cycle arrest in MM, we used TargetScan and miRanda to predict the candidate targets of miR-203a-5p. The potential target of miR-203a-5p in MM cells was explored using the luciferase reporter assay, qRT-PCR, and Western blot.@*RESULTS@#An integrated analysis of three MM miRNA expression datasets showed that the levels of miR-203a-5p in MM were notably downregulated compared with those in normal plasmacytes. Accordingly, the relative expression levels of miR-203a-5p were decreased in MM cell lines. In addition, overexpression of miR-203a-5p inhibited the proliferation and cell cycle progression of RPMI8226 and U266 cells. In vivo experiments demonstrated that upregulation of miR-203a-5p expression could significantly inhibit the tumorigenesis of subcutaneous myeloma xenografts in nude mice. Mechanistic investigation led to the identification of Jagged 1 (JAG1) as a novel and direct downstream target of miR-203a-5p. Interestingly, the reintroduction of JAG1 abrogated miR-203a-5p-induced MM cell growth inhibition and cell cycle arrest.@*CONCLUSION@#Our data demonstrate that miR-203a-5p inhibits cell proliferation and cell cycle progression in MM cells by targeting JAG1, supporting the utility of miR-203a-5p as a novel and potential therapeutic agent for miRNA-based MM therapy.


Subject(s)
Animals , Mice , Humans , Multiple Myeloma/pathology , Cell Line, Tumor , Mice, Nude , MicroRNAs/metabolism , Cell Division , Cell Proliferation , Disease Models, Animal , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Jagged-1 Protein/metabolism
3.
Journal of Central South University(Medical Sciences) ; (12): 407-415, 2022.
Article in English | WPRIM | ID: wpr-928985

ABSTRACT

OBJECTIVES@#Bladder cancer is one of the most common urothelial tumors with high incidence and mortality rates. Although it has been reported that microRNA (miR)-133b can regulate tumorigenesis of bladder cancer, the mechanism remains unclear. Sex-determining region Y-box transcription factor 4 (SOX4) exhibits an important role in tumorigenesis, but it is unclear whether SOX4 and miR-133b are associated with regulation of pathogenesis of bladder cancer. This study aims to determine the expressions of SOX4 and miR-133b in bladder cancer tissues and cells, investigate their effects on the proliferation, colony formation, and invasion of bladder cancer cells, and to explore the association between miR-133b and SOX4 in regulating biological featurss of bladder cancer cells.@*METHODS@#The bladder cancer and adjacent tissue samples of 10 patients who underwent surgical resection in the Second Xiangya Hospital of Central South Universty from Januray to June 2015 were obtained. The levels of miR-133b were tested by real-time PCR, and the protein levels of SOX4 were evaluated using Western blotting in bladder cancer tissues, matched adjacent tissues, and cell lines. The correlation between miR-133b expression and SOX4 expression in bladder cancer tissues was analyzed. Using the online database TargetScan, the relationship between SOX4 and miR-133b was predicted. MiR-133b mimics, miR-133b inhibitor, and short hairpin RNA (shRNA)-SOX4 were transfected into T24 cells by Lipofectamine 2000. The relationship between miR-133b and SOX4 was also verified by a dual-luciferase reporter assay. The proliferation of T24 cells cultured for 0, 12, 48, 72, and 96 h was evaluated by cell counting kit-8 (CCK-8) assay. The colony formation capacity of bladder cancer cells was tested after 14-day culture, and cell invasion capacity was evaluated with Transwell invasion assay.@*RESULTS@#Bladder cancer tissue and bladder cancer cells had low level of miR-133b but high level of SOX4, compared with matched adjacent tissues and normal bladder epithelial cells. A negative correlation between miR-133b mRNA and SOX4 protein levels in bladder cancer tissues was also found (r=-0.84). The results of online database TargetScan showed that miR-133b targets at SOX4, and overexpression of miR-133b significantly attenuated the expression of SOX4 in T24 cells. Both overexpression of miR-133b and knockdown of SOX4 significantly inhibited the proliferation, colony formation, and invasion capacity of bladder cancer cells in vitro. SOX4 down-regulation restored the effects of miR-133b inhibitor on the proliferation, colony formation, and invasion capacity of T24 cells.@*CONCLUSIONS@#The up-regulation of SOX4 contributes to the progression of bladder cancer, and miR-133b can regulate the proliferation, colony formation, and invasion of bladder cancer cells via inhibiting SOX4.


Subject(s)
Humans , Carcinogenesis/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial Cells/metabolism , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , SOXC Transcription Factors/genetics , Urinary Bladder , Urinary Bladder Neoplasms/genetics
4.
Journal of Zhejiang University. Science. B ; (12): 587-596, 2022.
Article in English | WPRIM | ID: wpr-939829

ABSTRACT

The epidermal cell differentiation regulator zinc finger protein 750 (ZNF750) is a transcription factor containing the Cys2His2 (C2H2) domain, the zinc finger structure of which is located at the N-terminal 25‍‍-‍46 amino acids of ZNF750. It can promote the expression of differentiation-related factors while inhibiting the expression of progenitor cell-related genes. ZNF750 is directly regulated by p63 (encoded by the TP63 gene, belonging to the TP53 superfamily). The Krüppel-like factor 4 (KLF4), repressor element-1 (RE-1)‍-silencing transcription factor (REST) corepressor 1 (RCOR1), lysine demethylase 1A (KDM1A), and C-terminal-binding protein 1/2 (CTBP1/2) chromatin regulators cooperate with ZNF750 to repress epidermal progenitor genes and activate the expression of epidermal terminal differentiation genes (Sen et al., 2012; Boxer et al., 2014). Besides, ZNF750 and the regulatory network composed of bone morphogenetic protein (BMP) signaling pathway, long non-coding RNAs (lncRNAs) (anti-differentiation non-coding RNA (ANCR) and tissue differentiation-inducing non-protein coding RNA (TINCR)), musculoaponeurotic fibrosarcoma oncogene (MAF)/MAF family B (MAFB), grainy head-like 3 (GRHL3), and positive regulatory domain zinc finger protein 1 (PRDM1) jointly promote epidermal cell differentiation (Sen et al., 2012).


Subject(s)
Humans , Adenocarcinoma/metabolism , Carcinogenesis/genetics , Colonic Neoplasms/metabolism , Histone Demethylases/metabolism , RNA, Long Noncoding/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism
5.
Journal of Central South University(Medical Sciences) ; (12): 300-308, 2021.
Article in English | WPRIM | ID: wpr-880659

ABSTRACT

Epstein-Barr virus (EBV), a definite tumorigenic virus, is closely related to the development of nasopharyngeal cancer, gastric cancer, lymphoma and other tumors. EBV encodes a total of 44 mature microRNAs, which can regulate the expression of virus and host genes. EBV-encoded microRNAs and their regulated target molecules participate in the biological functions of tumor apoptosis, proliferation, invasion, and metastasis during tumorigenesis and development, and play an important role in the development of tumor.


Subject(s)
Humans , Carcinogenesis/genetics , Epstein-Barr Virus Infections/genetics , Gene Expression Regulation, Neoplastic , Herpesvirus 4, Human/genetics , MicroRNAs/genetics , Nasopharyngeal Neoplasms/genetics
6.
Chinese Medical Journal ; (24): 1017-1030, 2021.
Article in English | WPRIM | ID: wpr-878138

ABSTRACT

The LIM domain only 1 (LMO1) gene belongs to the LMO family of genes that encodes a group of transcriptional cofactors. This group of transcriptional cofactors regulates gene transcription by acting as a key "connector" or "scaffold" in transcription complexes. All LMOs, including LMO1, are important players in the process of tumorigenesis. Unique biological features of LMO1 distinct from other LMO members, such as its tissue-specific expression patterns, interacting proteins, and transcriptional targets, have been increasingly recognized. Studies indicated that LMO1 plays a critical oncogenic role in various types of cancers, including T-cell acute lymphoblastic leukemia, neuroblastoma, gastric cancer, lung cancer, and prostate cancer. The molecular mechanisms underlying such functions of LMO1 have also been investigated, but they are currently far from being fully elucidated. Here, we focus on reviewing the current findings on the role of LMO1 in tumorigenesis, the mechanisms of its oncogenic action, and the mechanisms that drive its aberrant activation in cancers. We also briefly review its roles in the development process and non-cancer diseases. Finally, we discuss the remaining questions and future investigations required for promoting the translation of laboratory findings to clinical applications, including cancer diagnosis and treatment.


Subject(s)
Humans , Male , Carcinogenesis/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , LIM Domain Proteins/genetics , Transcription Factors/metabolism
7.
Braz. j. med. biol. res ; 54(5): e10637, 2021. tab, graf
Article in English | LILACS | ID: biblio-1153548

ABSTRACT

Transcription factors control, coordinate, and separate the functions of distinct network modules spatially and temporally. In this review, we focus on the transcription factor 21 (TCF21) network, a highly conserved basic-helix-loop-helix (bHLH) protein that functions to integrate signals and modulate gene expression. We summarize the molecular and biological properties of TCF21 control with an emphasis on molecular and functional TCF21 interactions. We suggest that these interactions serve to modulate the development of different organs at the transcriptional level to maintain growth homeostasis and to influence cell fate. Importantly, TCF21 expression is epigenetically inactivated in different types of human cancers. The epigenetic modification or activation and/or loss of TCF21 expression results in an imbalance in TCF21 signaling, which may lead to tumor initiation and, most likely, to progression and tumor metastasis. This review focuses on research on the roles of TCF21 in development and tumorigenesis systematically considering the physiological and pathological function of TCF21. In addition, we focus on the main molecular bases of its different roles whose importance should be clarified in future research. For this review, PubMed databases and keywords such as TCF21, POD-1, capsulin, tumors, carcinomas, tumorigenesis, development, and mechanism of action were utilized. Articles were selected within a historical context as were a number of citations from journals with relevant impact.


Subject(s)
Humans , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Carcinogenesis/genetics , Signal Transduction , Cell Differentiation , Cell Transformation, Neoplastic/genetics
8.
Arq. neuropsiquiatr ; 78(1): 34-38, Jan. 2020. graf
Article in English | LILACS | ID: biblio-1088980

ABSTRACT

Abstract Brain tumors are one of the most common causes of cancer-related deaths around the world. Angiogenesis is critical in high-grade malignant gliomas, such as glioblastoma multiforme. Objective: The aim of this study is to comparatively analyze the angiogenesis-related genes, namely VEGFA, VEGFB, KDR, CXCL8, CXCR1 and CXCR2 in LGG vs. GBM to identify molecular distinctions using datasets available on The Cancer Genome Atlas (TCGA). Methods: DNA sequencing and mRNA expression data for 514 brain lower grade glioma (LGG) and 592 glioblastoma multiforme (GBM) patients were acquired from The Cancer Genome Atlas (TCGA), and the genetic alterations and expression levels of the selected genes were analyzed. Results: We identified six distinct KDR mutations in the LGG patients and 18 distinct KDR mutations in the GBM patients, including missense and nonsense mutations, frame shift deletion and altered splice region. Furthermore, VEGFA and CXCL8 were significantly overexpressed within GBM patients. Conclusions: VEGFA and CXCL8 are important factors for angiogenesis, which are suggested to have significant roles during tumorigenesis. Our results provide further evidence that VEGFA and CXCL8 could induce angiogenesis and promote LGG to progress into GBM. These findings could be useful in developing novel targeted therapeutics approaches in the future.


Resumo Os tumores cerebrais são uma das causas mais comuns de mortes relacionadas ao câncer em todo o mundo. A angiogênese tem caráter crítico em gliomas malignos de alto grau, como o glioblastoma multiforme. Objetivo: O objetivo deste estudo foi analisar comparativamente os genes relacionados à angiogênese, VEGFA, VEGFB, KDR, CXCL8, CXCR1 e CXCR2 em GBG vs. GBM para identificar distinções moleculares usando conjuntos de dados disponíveis no The Cancer Genome Atlas (TCGA). Métodos: Os dados de sequenciamento de DNA e expressão de mRNA para 514 pacientes com glioma cerebral de baixo grau (GBG) e 592 pacientes com glioblastoma multiforme (GBM) foram adquiridos do TCGA e as alterações genéticas e os níveis de expressão dos genes selecionados foram analisados. Resultados: Identificamos seis mutações KDR distintas nos pacientes GBG e 18 mutações KDR distintas nos pacientes GBM, incluindo mutações missense e nonsense, exclusão de mudança de quadro e região de emenda alterada. Além disso, VEGFA e CXCL8 foram significativamente super-expressos nos pacientes com GBM. Conclusões: VEGFA e CXCL8 são fatores importantes para a angiogênese, os quais parecem ter um papel significativo durante a tumorigênese. Nossos resultados fornecem evidências adicionais de que o VEGFA e o CXCL8 podem induzir a angiogênese e promover o GBG a progredir no GBM. Esses achados podem ser úteis no desenvolvimento de novas abordagens terapêuticas direcionadas no futuro.


Subject(s)
Humans , Brain Neoplasms/genetics , Glioblastoma/genetics , Carcinogenesis/genetics , Glioma/genetics , Neovascularization, Pathologic/genetics , Reference Values , Gene Expression , Interleukin-8/analysis , Point Mutation/genetics , Glioblastoma/pathology , Receptors, Interleukin-8A/analysis , Receptors, Interleukin-8B/analysis , Vascular Endothelial Growth Factor Receptor-2/analysis , Vascular Endothelial Growth Factor A/analysis , Vascular Endothelial Growth Factor B/analysis , Glioma/pathology
9.
Chinese Journal of Biotechnology ; (12): 1992-2000, 2020.
Article in Chinese | WPRIM | ID: wpr-878460

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the five most common malignant tumors. According to the latest statistics of the World Health Organization (WHO), the incident and mortality rates of HCC ranks the eighth and third in the world, respectively, which severely affect people's health. Exosomes are extracellular vesicles with a bilayer of phospholipids, which carry active substances such as proteins and nucleic acids derived from their mother cells. These exosomes greatly facilitate the exchange of substances and information between cells, and coordinate physiological and pathological processes in the body. In recent years, a large number of studies have shown that exosomal proteins play important roles in the tumorigenesis, development, diagnosis and treatment of HCC. Here we review the composition and functions of exosomes and the role of exosomal proteins in HCC.


Subject(s)
Humans , Carcinogenesis/genetics , Carcinoma, Hepatocellular/therapy , Exosomes/metabolism , Liver Neoplasms/therapy , MicroRNAs/genetics , Proteomics
10.
Biol. Res ; 53: 13, 2020. tab, graf
Article in English | LILACS | ID: biblio-1100919

ABSTRACT

BACKGROUND: Gallbladder cancer (GBC) is the most common tumor of the biliary tract. The incidence of GBC shows a large geographic variability, being particularly frequent in Native American populations. In Chile, GBC represents the second cause of cancer-related death among women. We describe here the establishment of three novel cell lines derived from the ascitic fluid of a Chilean GBC patient, who presented 46% European, 36% Mapuche, 12% Aymara and 6% African ancestry. RESULTS: After immunocytochemical staining of the primary cell culture, we isolated and comprehensively characterized three independent clones (PUC-GBC1, PUC-GBC2 and PUC-GBC3) by short tandem repeat DNA profiling and RNA sequencing as well as karyotype, doubling time, chemosensitivity, in vitro migration capability and in vivo tumorigenicity assay. Primary culture cells showed high expression of CK7, CK19, CA 19-9, MUC1 and MUC16, and negative expression of mesothelial markers. The three isolated clones displayed an epithelial phenotype and an abnormal structure and number of chromosomes. RNA sequencing confirmed the increased expression of cytokeratin and mucin genes, and also of TP53 and ERBB2 with some differences among the three cells lines, and revealed a novel exonic mutation in NF1. The PUC-GBC3 clone was the most aggressive according to histopathological features and the tumorigenic capacity in NSG mice. CONCLUSIONS: The first cell lines established from a Chilean GBC patient represent a new model for studying GBC in patients of Native American descent.


Subject(s)
Humans , Animals , Male , Middle Aged , Antigens, Tumor-Associated, Carbohydrate/genetics , Indians, South American/genetics , Gallbladder Neoplasms/genetics , Ascitic Fluid/metabolism , Tumor Cells, Cultured , Carcinogenicity Tests , Chile , DNA Fingerprinting , Tumor Suppressor Protein p53/genetics , Cisplatin/pharmacology , Mice, Inbred NOD , Clone Cells/drug effects , Clone Cells/metabolism , Sequence Analysis, RNA , Receptor, ErbB-2/genetics , Genes, erbB-2/genetics , Gene Expression Profiling , Cell Line, Tumor/drug effects , Cell Line, Tumor/metabolism , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Epithelial Cells/metabolism , Keratin-19/genetics , Keratin-7/genetics , Carcinogenesis/genetics , Gallbladder Neoplasms/metabolism , Antineoplastic Agents/pharmacology
11.
Braz. j. med. biol. res ; 52(8): e8341, 2019. tab, graf
Article in English | LILACS | ID: biblio-1011606

ABSTRACT

MicroRNAs (miRNAs), as post-transcriptional regulators, have been reported to be involved in the initiation and progression of various types of cancer, including gastric cancer (GC). The present study aimed to investigate the role of miR-383-5p in gastric carcinogenesis. Cell viability was analyzed using CCK-8 kit. Annexin V-fluorescein isothiocyanate/propidium iodide double staining was used to evaluate cell apoptosis. The expression levels of miR-383-5p and histone deacetylase 9 (HDAC9) mRNA in GC tissues and cell lines were analyzed using RT-qPCR. The protein expression of HDAC9 was detected by western blotting. We found that HDAC9 was up-regulated and miR-383-5p was down-regulated in GC tissues and cell lines. High HDAC9 expression or low miR-383-5p expression was closely related to poor prognosis and metastasis in GC patients. HDAC9 knockout or miR-383-5p mimics led to growth inhibition and increased apoptosis in AGS and SGC-7901 cells. More importantly, we validated that miR-383-5p as a post-transcriptional regulator inhibited HDAC9 expression and was inversely correlated with HDAC9 expression in GC tissues. miR-383-5p had the opposite effects to HDAC9 in gastric carcinogenesis. miR-383-5p played an important role in gastric carcinogenesis, and it is one of the important mechanisms to regulate oncogenic HDAC9 in GC, which might be helpful in the development of novel therapeutic strategies for the treatment of GC.


Subject(s)
Humans , Male , Female , Middle Aged , Repressor Proteins/metabolism , Stomach Neoplasms/pathology , Carcinoma/pathology , MicroRNAs/metabolism , Histone Deacetylases/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , RNA, Messenger/metabolism , Carcinoma/genetics , Carcinoma/metabolism , Down-Regulation , Gene Expression Regulation, Neoplastic , Apoptosis , Disease Progression , Cell Proliferation/genetics , Carcinogenesis/genetics , Neoplasm Staging
12.
Braz. j. med. biol. res ; 51(10): e6839, 2018. graf
Article in English | LILACS | ID: biblio-951715

ABSTRACT

Long non-coding RNA antisense non-coding RNA in the INK4 locus (ANRIL) has been reported to promote tumorigenesis via regulating microRNA (miR)-99a in gastric cancer cells. However, the role of each component involved in it is still not well understood. This study aimed to verify the role of ANRIL in gastric cancer as well as the underlying mechanisms. ANRIL levels in clinical gastric cancer tissues and cell lines were tested by qPCR. Effects of ANRIL silence on cell viability, migration and invasion, apoptosis, and miR-99a expression in MKN-45 and SGC-7901 cells were measured using CCK-8, Transwell assay, flow cytometry, and qPCR assays, respectively. Then, effects of miR-99a inhibition on ANRIL-silenced cells were evaluated. B-lymphoma Mo-MLV insertion region 1 (BMI1) expression, after abnormal expression of ANRIL and miR-99a, was determined. Finally, expression of key proteins in the apoptotic, Notch, and mTOR pathways was assessed. ANRIL level was elevated in gastric cancer tissues and cell lines. Knockdown of ANRIL suppressed cell viability, migration, and invasion, and increased apoptosis through up-regulating miR-99a. Furthermore, ANRIL silence down-regulated BMI1 via up-regulating miR-99a. BMI1 silence down-regulated Bcl-2 and key kinases in the Notch and mTOR pathways and up-regulated p16 and cleaved caspases. We verified the tumor suppressive effects of ANRIL knockdown in gastric cancer cells via crosstalk with miR-99a. Together, we provided a novel regulatory mechanism for ANRIL in gastric cancer, in which ANRIL silence down-regulated BMI1 via miR-99a, along with activation of the apoptotic pathway and inhibition of the Notch and mTOR pathways.


Subject(s)
Humans , Stomach Neoplasms/metabolism , Down-Regulation , MicroRNAs/metabolism , TOR Serine-Threonine Kinases/metabolism , RNA, Long Noncoding/genetics , Carcinogenesis/genetics , Stomach Neoplasms/pathology , Transfection , Gene Expression Regulation, Neoplastic , Up-Regulation , Apoptosis/genetics , Cell Line, Tumor , Neoplasm Invasiveness
14.
Int. braz. j. urol ; 41(5): 898-905, Sept.-Oct. 2015. tab, graf
Article in English | LILACS | ID: lil-767056

ABSTRACT

ABSTRACT NKX3.1 and PTEN genes are involved in the development and progression of prostate cancer (PCa). Here, in line with other studies that correlated the expression of these two genes, we aimed at evaluating the expression pattern of these genes in clinical PCa samples. Collectively, 81 tissue samples including 45 human PCa and 36 benign prostatic hyperplasia (BPH) specimens were included in the study. The tissue samples were subjected to RNA extraction and subsequently to cDNA synthesis according to the kit manufacturer's protocol. Quantitative Real-Time PCR assay was performed for each sample in triplicate reactions. REST and SPSS software were used to statistically analyze PTEN and NKX3.1 gene expression data. Expression level of both NKX3.1 and PTEN genes was down-regulated in PCa samples compared to BPH samples. The relative expression ratio of PTEN and NKX3.1 was decreased to 0.155 and 0.003, respectively (P=0.000). The results of Chi-Square analysis revealed a significant correlation between the expression of these genes in both BPH and cancer groups (P=0.004 and 0.001, respectively). According to previous studies and our data, we concluded that the association between the down-regulation of PTEN and NKX3.1 genes contributed to the prostate tumorigenesis. This might highlight the interaction between the proteins encoded by these genes. Furthermore, this finding might be exploited for the development of innovative diagnostic and therapeutic approaches in PCa.


Subject(s)
Aged , Aged, 80 and over , Humans , Male , Middle Aged , Down-Regulation , Gene Expression , Homeodomain Proteins/genetics , PTEN Phosphohydrolase/genetics , Prostatic Neoplasms/genetics , Transcription Factors/genetics , Carcinogenesis/genetics , Disease Progression , Electrophoresis, Gel, Two-Dimensional , Genetic Markers , Homeodomain Proteins/analysis , PTEN Phosphohydrolase/analysis , Real-Time Polymerase Chain Reaction , Reference Values , Temperature , Transition Temperature , Transcription Factors/analysis
15.
Journal of Korean Medical Science ; : 1375-1380, 2015.
Article in English | WPRIM | ID: wpr-183085

ABSTRACT

A growing body of evidence suggests that epigenetic modifications are promising potential mechanisms in cancer research. Among the molecules that mediate epigenetic mechanisms, histone deacetylases (HDACs) are critical regulators of gene expression that promote formation of heterochromatin by deacetylating histone and non-histone proteins. Aberrant regulation of HDACs contributes to malignant transformation and progression in a wide variety of human cancers, including hepatocellular carcinoma (HCC), gastric cancer, lung cancer, and other cancers. Thus, the roles of HDACs have been extensively studied because of their potential as therapeutic targets. However, the underlying mechanism leading to deregulation of individual HDACs remains largely unknown. Some reports have suggested that functional microRNAs (miRNAs) modulate epigenetic effector molecules including HDACs. Here, we describe the oncogenic or tumor suppressive functions of HDAC families and their regulatory miRNAs governing HDAC expression in hepatocarcinogenesis.


Subject(s)
Humans , Carcinogenesis/genetics , Carcinoma, Hepatocellular/genetics , Epigenesis, Genetic/genetics , Gene Expression Regulation, Neoplastic/genetics , Histone Deacetylases/genetics , Histones/metabolism , Liver Neoplasms/genetics , MicroRNAs/genetics , RNA Processing, Post-Transcriptional/genetics , Tumor Suppressor Proteins/genetics
16.
Braz. j. med. biol. res ; 47(5): 369-375, 02/05/2014. tab, graf
Article in English | LILACS | ID: lil-709431

ABSTRACT

To investigate signal regulation models of gastric cancer, databases and literature were used to construct the signaling network in humans. Topological characteristics of the network were analyzed by CytoScape. After marking gastric cancer-related genes extracted from the CancerResource, GeneRIF, and COSMIC databases, the FANMOD software was used for the mining of gastric cancer-related motifs in a network with three vertices. The significant motif difference method was adopted to identify significantly different motifs in the normal and cancer states. Finally, we conducted a series of analyses of the significantly different motifs, including gene ontology, function annotation of genes, and model classification. A human signaling network was constructed, with 1643 nodes and 5089 regulating interactions. The network was configured to have the characteristics of other biological networks. There were 57,942 motifs marked with gastric cancer-related genes out of a total of 69,492 motifs, and 264 motifs were selected as significantly different motifs by calculating the significant motif difference (SMD) scores. Genes in significantly different motifs were mainly enriched in functions associated with cancer genesis, such as regulation of cell death, amino acid phosphorylation of proteins, and intracellular signaling cascades. The top five significantly different motifs were mainly cascade and positive feedback types. Almost all genes in the five motifs were cancer related, including EPOR, MAPK14, BCL2L1, KRT18, PTPN6, CASP3, TGFBR2, AR, and CASP7. The development of cancer might be curbed by inhibiting signal transductions upstream and downstream of the selected motifs.


Subject(s)
Humans , Data Mining , Gene Regulatory Networks , Signal Transduction/genetics , Stomach Neoplasms/genetics , Amino Acid Motifs/genetics , Cell Death , Carcinogenesis/genetics , Feedback, Physiological , Gene Expression Regulation , Gene Ontology , Molecular Sequence Annotation , Phosphorylation , Stomach Neoplasms/metabolism
17.
São Paulo; s.n; 2014. [167] p. ilus, tab, graf.
Thesis in Portuguese | LILACS | ID: lil-790389

ABSTRACT

INTRODUÇÃO: O carcinoma adrenocortical é uma neoplasia rara que carreia um prognóstico reservado. Recentemente, uma série de estudos demonstrou o potencial do perfil de miRNAs na diferenciação entre adenomas e carcinomas adrenocorticais, estratificação de risco e prognóstico. Entretanto, pouco se sabe ainda sobre a regulação pós-transcricional de miRNAs. Nesse contexto, o LIN28 é uma proteína ligadora de RNAs altamente conservada que surgiu como um modulador do let-7, uma importante família de miRNAs amplamente conhecida por seus efeitos supressivos tumorais. Além do let-7, o LIN28 também mostrou regular e ser regulado pelo mir-9, mir-30 e mir-125. OBJETIVOS: Analisar a expressão gênica e proteica do LIN28 em uma grande coorte de tumores adrenocorticais (TACs) de adultos e pediátricos, além de investigar a variação no número de cópias dos genes LIN28A e LIN28B e a expressão dos miRNAs regulatórios do LIN28 (família let-7, mir-9, mir-30 e mir-125) em um subgrupo desta coorte. MÉTODOS: A expressão proteica do LIN28 foi avaliada em um total de 266 TACs de adultos (78 adenomas e 188 carcinomas) e 44 pediátricos (35 clinicamente benignos e 9 clinicamente malignos). A expressão dos genes LIN28A e LIN28B foi avaliada em um subgrupo de 86 TACs adultos e pediátricos e a análise da variação no número de cópias destes genes em 58 TACs. O estudo de expressão das famílias dos miRNAs let-7, mir-9, mir-30 e mir-125 foi realizado em 28 carcinomas adrenocorticais de adultos. RESULTADOS: Em adultos, o gene LIN28A mostrou-se hiperexpresso em carcinomas agressivos quando comparado a adenomas [7,0 (0 a 174,3) vs. 3,6 (0 a 18,3); p = 0,006, respectivamente] e observou-se uma tendência a maior expressão quando comparados a carcinomas não agressivos [7,0 (0 a 174,3) vs. 7,1 (0 a 17,1); p = 0,092]. A expressão do LIN28B foi negativa na grande maioria (92%) dos TACs de adultos. Curiosamente, uma imunorreatividade fraca para o LIN28 foi significativamente associada com...


INTRODUCTION: Adrenocortical carcinoma is a rare neoplasm with overall poor prognosis. Recently, several studies demonstrated the potential of miRNA profiling in differentiating between adrenocortical adenomas and carcinomas, risk stratification and prognosis. Nevertheless, little is known about posttranscriptional regulation of miRNAs. LIN28 is a highly conserved RNA-binding protein that has emerged as a modulator of the processing of let-7, an important family of miRNAs widely known for its tumor-suppressive effects. Besides from let-7, LIN28 has also shown to regulate and be regulated by mir-9, mir-30 and mir-125. OBJECTIVES: To analyze LIN28 gene and protein expression in a large cohort of adult and pediatric adrenocotical tumors (ACTs), and investigate the copy number variation analysis for LIN28A and LIN28B genes and the expression of LIN28 regulatory microRNAs (let-7 family, mir-9, mir-30 e mir-125) in a subgroup of this cohort. METHODS: LIN28 protein expression was assessed in a total of 266 adult (78 adenomas and 188 carcinomas) and 44 pediatric ACTs (35 clinically benign and 9 clinically malignant). LIN28A and LIN28B gene expression was evaluated in a subgroup of 86 adult and pediatric ACTs and copy number variation analysis of these genes in 58 ACTs. The expression of let-7 family, mir-9, mir-30 and mir-125 was performed in 28 adult carcinomas. RESULTS: In adults, LIN28A gene was overexpressed in aggressive carcinomas when compared with adenomas [7.0 fold change (from 0 to 174.3) vs. 3.6 (from 0 to 18.3); p = 0.006, respectively] and a trend towards greaten expression when compared with non-aggressive carcinomas [7.0 (from 0 to 174.3) vs. 7.1 (from 0 to 17.1); p = 0.092]. LIN28B expression was undetectable in the great majority (92%) of adult ACTs. Surprisingly, weak LIN28 staining was significantly associated with reduced disease-free survival in this population (p = 0.01), but for overall survival only a trend was detectable (p= 0.117). In...


Subject(s)
Humans , Male , Female , Child , Adult , Biomarkers, Tumor/genetics , Carcinogenesis/genetics , Adrenocortical Carcinoma/genetics , Gene Expression , MicroRNAs/genetics , Prognosis , RNA-Binding Proteins/metabolism , Neoplasm Proteins/genetics , Gene Expression Regulation, Neoplastic/genetics , Survival
SELECTION OF CITATIONS
SEARCH DETAIL